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1. Introduction

In a flat space-time massive spin s particles in a massless limit decompose into massless spin

s, s−1, . . . ones. This, in particular, leads to the possibility of gauge invariant description

of massive spin s particles, where massless spin s field plays the role of “main” gauge field,

while the lower spin fields play the roles of Goldstone fields that have to be “eaten“ in the

process of spontaneous symmetry breaking to make main field massive. Such approach to

description of massive particles became rather popular last times, e.g. [1]–[13].

In the supersymmetric theories all particles must belong to some supermultiplet, mas-

sive or massless. The same reasoning on the massless limit means that massive supermul-

tiplets could (should) be constructed out of the massless ones in the same way as massive

particles out of the massless ones. Because supersymmetry is a very restrictive symmetry

even construction of free massive supermultiplets could give very usefull and important in-

formation on the structure of full interacting theories, where spontaneous (super)symmetry

breaking leading to the appearance of such massive supermultiplets could occur.

In supergravities partial super-Higgs effect N → N −k, when part of the supersymme-

tries remains unbroken, must unavoidably leads to the appearance of k massive spin 3/2

supermultiplets, corresponding to the unbroken N −k supersymmetries. The main subject

of our paper is the construction of massive spin 3/2 supermultiplets out of the massless
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ones. Namely, we consider N = 1, 2, 3 supermultiplets without central charge, as well as

N = 2, 4 supermultiplets with central charge (for classification of massless and massive

supermultiplets see e.g. [14]). We will not consider one more possible case — N = 6 su-

permultiplet with central charge, because it could hardly have phenomenological interest,

though it could be constructed in the same way as well. Besides, we consider two examples

of massive supermultiplets in (A)dS space, namely N = 1 spin 3/2 and spin 2 ones.

The paper is organized as follows. In the next section we start with the simplest

case — massive N = 1 spin 3/2 supermultiplet [15 – 18]. This supermultiplets is known

for a long time, but it is very usefull to display the general technics for construction of

massive supermultiplets we will heavily use in what follows. There is no strict definition

of what is mass in (Anti) de Sitter space and indeed rather different definitions there exist

in the literature. So we add small section devoted to the discussion of this subject (and

in particular the so called forbidden mass regions, see e.g. [19 – 21]) using massive spin 3/2

particle in AdS space as an example. Then, in the next two sections, we consider massive

spin 3/2 [22] and massive spin 2 supermultiplets [18, 23 – 25] in AdS space. Our results

here show rather interesting differences between supermultiplets in flat and AdS spaces,

as well as between supermultiplets with integer and half-integer superspins. Also, massive

spin 2 supermultiplet in AdS shows one more example of the flat space limit — massless

limit ambiguity, which is well known for the massive spin 2 [26 – 28] and spin 3/2 [29 – 31]

particles.

Then we return back to the flat Minkowski space and in the following four sections

we systematically consider massive spin 3/2 supermultiplets with N = 2 and N = 3

supersymmetry without central charge as well as N = 2 and N = 4 supermultiplets with

central charge. In all cases exactly as in N = 1 case it turns out crucial for the whole

construction to make duality transformations mixing different supermultiplets containing

vector fields.

2. N = 1 supermultiplet in flat space

Let us start with the simplest case — massive N = 1 supermultiplet [15 – 18] in flat space-

time. Such multiplet contains massive particles with spins (3/2, 1, 1′, 1/2), all with equal

masses. In the massless limit massive spin 3/2 particle decompose into massless spin 3/2

and 1/2 ones in the same way as massive spin 1 particle into massless spin1 and spin 0

ones. As a result in the massless limit our massive supermultiplet gives three massless

supermultiplets:






3/2

1 1′

1/2






⇒

(

3/2

1

)

⊕
(

1′

1/2

)

⊕
(

1/2

0, 0′

)

We denote appropriate fields as (Ψµ, Aµ), (Bµ, ρ) and (χ,ϕ, π), correspondingly. We start

with the massless Lagrangian being the sum of kinetic terms for all these fields:

L0 =
i

2
εµναβΨ̄µγ5γν∂αΨβ +

i

2
ρ̄∂̂ρ +

i

2
χ̄∂̂χ − 1

4
Aµν

2 − 1

4
Bµν

2 +
1

2
(∂µϕ)2 +

1

2
(∂µπ)2 (2.1)
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which is invariant under three local gauge transformations:

δΨµ = ∂µξ, δAµ = ∂µλ, δBµ = ∂µλ̃

It is very important that the massive supermultiplet must contains vector and axial-vector

particles and not two vector or two axial-vector ones. This, in turn, opens the possibility to

make dual transformation mixing two supermultiplet, namely (Ψµ, Aµ) and (Bµ, ρ) ones.

Thus, the most general supertransformations leaving the massless Lagrangian invariant

have the form:

δΨµ = − i

2
√

2
σαβ [cos(θ)Aαβ − sin(θ)Bαβγ5]γµη

δAµ =
√

2 cos(θ)(Ψ̄µη) + i sin(θ)(ρ̄γµη)

δBµ =
√

2 sin(θ)(Ψ̄µγ5η) + i cos(θ)(ρ̄γµγ5η) (2.2)

δρ = −1

2
σαβ[sin(θ)Aαβ + cos(θ)Bαβγ5]η

δχ = −i∂̂(ϕ + γ5π)η δϕ = (χ̄η) δπ = (χ̄γ5η)

Now we have to add mass terms for all fields as well as appropriate corrections for the

fermionic supertransformations. For this purpose we, first of all, must identify Goldstone

fields which have to be eaten by gauge fields making them massive. For bosonic fields the

choice is unambiguous — scalar field ϕ for vector Aµ and pseudo-scalar π for axial-vector

Bµ. Thus, we add the following mass terms:

Lm = −mAµ∂µϕ − mBµ∂µπ +
m2

2
Aµ

2 +
m2

2
Bµ

2 (2.3)

As for the spin 3/2 particle Ψµ, we have two spinor fields ρ and χ which could serve as a

Goldstone one, so we consider the most general possible mass terms:

1

m
Lm =

1

2
Ψ̄µσµνΨν + ia1(Ψ̄γ)ρ + ia2(Ψ̄γ)χ + a3ρ̄ρ + a4ρ̄χ + a5χ̄χ (2.4)

Then the requirement that the total Lagrangian be invariant under (corrected) supertrans-

formations fixes the mixing angle θ as well as all unknown coefficients:

sin(θ) = cos(θ) =
1√
2
, a1 = − 1√

2
, a2 = 1, a3 = 0, a4 = −

√
2, a5 =

1

2

Moreover, this requirement unambiguously fixes the structure of appropriate corrections

for fermionic supertransformations:

1

m
δΨµ =

[

Aµ + Bµγ5 −
i

2
γµ(ϕ + γ5π)

]

η

1

m
δρ = − 1√

2
(ϕ + γ5π)η (2.5)

1

m
δχ = [iÂ + iB̂γ5 + ϕ + γ5π]η
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It is easy to check that with the resulting fermionic mass terms:

1

m
Lm =

1

2
Ψ̄µσµνΨν − i√

2
(Ψ̄γ)ρ + i(Ψ̄γ)χ −

√
2ρ̄χ +

1

2
χ̄χ

the total Lagrangian is invariant (besides global supertransformations) under the following

local gauge transformations:

δΨµ = ∂µξ − im

2
γµξ, δρ = − m√

2
ξ, δχ = mξ (2.6)

From the last formula one can see which combination of two spinor fields plays the role of

Goldstone one. Indeed, if we introduce two orthogonal combinations:

ρ̃ = − 1√
3
ρ +

√

2

3
χ, χ̃ =

√

2

3
ρ +

1√
3
χ

then the fermionic mass terms take the form:

1

m
Lm =

1

2
Ψ̄µσµνΨν + i

√

3

2
(Ψ̄γ)ρ̃ + ˜̄ρρ̃ − 1

2
˜̄χχ̃

which explicitly shows that we have spin 3/2 and spin 1/2 particles with equal masses.

Moreover, by using this local gauge transformation with ξ = −(ϕ + γ5π)η and introducing

gauge invariant derivatives for the scalar fields:

∇µϕ = ∂µϕ − mAµ, ∇µπ = ∂µπ − mBµ

one can bring supertransformations for the fermions into the following simple form:

δΨµ =

[

− i

4
σαβ(Aαβ − Bαβγ5)γµ −∇µ(ϕ + γ5π)

]

η

δρ = − 1

2
√

2
σαβ[Aαβ + Bαβγ5]η δχ = −i∇̂(ϕ + γ5π)η (2.7)

Note here that we work with Majorana fermions (and Majorana representation of

γ-matrices). In this, the γ5 matrix plays the role of imaginary unit i. Then we can

further simplify formula given above by introducing complex objects Cµ = (Aµ + γ5Bµ)

and z = ϕ + γ5π:

δΨµ =

[

− i

4
σαβC̄αβγµ −∇µz

]

η

δρ = − 1

2
√

2
σαβCαβη δχ = −i∇̂zη (2.8)

Now it is evident that we have one more symmetry — axial U(1)A global symmetry, the

axial charges for all fields being:

field η Ψµ, ρ, χ Cµ, z

qA +1 0 –1

Thus, we have seen that it is important for construction of this supermultiplet to have

possibility of making dual rotation of vector fields mixing massless supermultiplets. Also,

there is a tight connection between vector fields (Higgs effect) and spin 3/2 (super-Higgs

effect) masses. And indeed, the existence of dual versions of N = 2 supergravities and

appropriate gaugings makes partial super-Higgs effect possible [16, 32 – 35].
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3. Massive spin 3/2 in (A)dS4

In the (Anti) de Sitter space-time it is the (Anti) de Sitter group that plays the role of

global background symmetry instead of Poincare group in Minkowski space. As a result,

there is no strict definition of what is mass in such space. And indeed, a lot of controversy

on this subject exists in the literature. The aim of this small section is to explain the

definition of mass we (personally) adhere to using massive spin 3/2 particle as an example.

Anti de Sitter space is the constant curvature space without torsion or non-metricity,

so the main difference from the Minkowski space is the replacement of ordinary partial

derivatives by the covariant ones. We will use the following normalization here:

[∇µ,∇ν ] =
κ

2
σµν , κ = − 2Λ

(d − 1)(d − 2)
= −Λ

3
(3.1)

where Λ — cosmological term. Now let us consider the quadratic Lagrangian for spin 3/2

Ψµ and spin 1/2 χ fields with the most general mass terms:

L =
i

2
εµναβΨ̄µγ5γν∇αΨβ +

i

2
χ̄∇̂χ +

M

2
Ψ̄µσµνΨν + ia1(Ψ̄γ)χ +

a2

2
χ̄χ (3.2)

and require that it will be invariant under the following local gauge transformations:

δΨµ = ∇µξ + iα1γµξ δχ = α2ξ

Simple calculations immediately give:

a1 = α2, a2 = 2M, α1 = −M

2
, M2 =

2

3
α2

2 + k

For the gauge invariant description of massive particles it is natural to define massless

limit as the limit when Goldstone field(s) completely decouples from the the main gauge

field. In the case at hands this means that it is the parameter a1 determines the mass

a1 ∼ m. As for the concrete normalization we will require that in the flat space limit our

definition coincides with the usual one. Thus a1 =
√

3
2m and M =

√
m2 + κ. One of

the peculiar features of (Anti) de Sitter spaces is the existence of so called forbidden mass

regions [19 – 21]. And we see that different choices of what one call mass (M or m in the

case considered) lead to drastically different physical interpretations, as we illustrate by

the following simple picture:

For the fermionic fields with higher spins similar results can be easily obtained from

that of [10]. Also note the paper [36] where group-theoretical arguments in favor of de

Sitter space were given. At the same time for the bosonic particles our definition agrees

perfectly with the one used by authors of [19 – 21].

4. N = 1 supermultiplet in AdS4

In this section we consider the same massive N = 1 supermultiplet in Anti de Sitter

space [22]. Now, besides the replacement of ordinary partial derivatives by the covariant
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Figure 1: Forbidden regions.

ones, one has to take care on the definition of global supertransformations. The simple

and natural choice (e.g. [37]) is to use the spinor η satisfying the relation:

∇µη = − iκ0

2
γµη, κ0

2 = κ

as a parameter of such “global” supertransformations.

Now we return back to the sum of kinetic terms for all fields where ordinary derivatives

are replaced by covariant ones:

L0 =
i

2
εµναβΨ̄µγ5γν∇αΨβ +

i

2
ρ̄∇̂ρ+

i

2
χ̄∇̂χ− 1

4
Aµν

2 − 1

4
Bµν

2 +
1

2
(∂µϕ)2 +

1

2
(∂µπ)2 (4.1)

In Anti de Sitter space this Lagrangian is no longer invariant under the initial supertrans-

formations:

δ0L0 = − iκ0√
2
Ψ̄µ[cos(θ)(Aµν − γ5Ã

µν) + sin(θ)(γ5B
µν − B̃µν)]γνη + iκ0χ̄γµ(∂µϕ − γ5∂µπ)η

We proceed by adding the most general mass terms for the fermions as well as one derivative

terms for the bosons:

L1 =
a1

2
Ψ̄µσµνΨν + ia2(Ψ̄γ)ρ + ia3(Ψ̄γ)χ + a4ρ̄ρ + a5ρ̄χ +

a6

2
χ̄χ −

−m1A
µ∂µϕ − m2B

µ∂µπ (4.2)

and the most general additional terms for the fermionic supertransformations:

δ1Ψµ = [α1Aµ + α2Bµγ5 + iα3γµϕ + iα4γµγ5π]η

δ1ρ = [iβ1Â + iβ2B̂γ5 + β3ϕ + β4γ5π]η (4.3)

– 6 –
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δ1χ = [iβ5Â + iβ6B̂γ5 + β7ϕ + β8γ5π]η

Requirement that all variations containing one derivative cancel gives:

a1 = −M, a2 =
M√

2
sin(2θ), α1 = −M

√
2 cos(θ) α2 = −M

√
2 sin(θ)

a3 = m1

√
2 cos(θ) = m2

√
2 sin(θ), α3 = α4 = −a3

2
a4 = β1 = β2 = 0, β3 = a5 + m1 sin(θ), β4 = a5 + m2 cos(θ)

a5 = − m1

sin(θ)
= − m2

cos(θ)
, β5 = m1, β6 = m2, β7 = a6 − κ0, β8 = a6 + κ0

Here M = κ0

cos(2θ) . We see that it is the mixing angle θ (together with cosmological term)

determines all masses in this case. Recall, that in flat space we have sin(θ) = cos(θ) =
1√
2
, while here it is the singular point. Indeed, the flat space results could be correctly

reproduced only by taking simultaneous limits κ0 → 0 and θ → π
4 so that κ0 tan(2θ)

remains to be fixed.

At last we add appropriate mass terms for bosons:

L2 =
m1

2

2
Aµ

2 +
m2

2

2
Bµ

2 + b1ϕ
2 + b2π

2 (4.4)

and require that all variations without derivatives cancel. This gives:

m1 = M
√

2 sin(θ), m2 = M
√

2 cos(θ), a6 = −M, b1 = b2 = 0

The resulting mass terms for the fermions look like:

Lm = −M

2
Ψ̄µσµνΨν +

iM sin(2θ)√
2

(Ψ̄γ)ρ + iM sin(2θ)(Ψ̄γ)χ − M
√

2ρ̄χ − M

2
χ̄χ (4.5)

In this, besides the supertransformations, Lagrangian is invariant under the following local

gauge transformations:

δΨµ = ∇µξ +
iM

2
γµξ, δρ =

M sin(2θ)√
2

ξ, δχ = M sin(2θ)ξ (4.6)

Comparing this formula with the results of previous sections, one can conclude that it is

the combination m = M sin(2θ) = κ0 tan(2θ) determines the mass for spin 3/2 particle. So

we have four massive fields with masses (which become equal in the limit θ → π/4):

m3/2 = m, m1 =
m√

2 cos(θ)
, m1′ =

m√
2 sin(θ)

, m1/2 =
m

sin(2θ)
(4.7)

As in the flat case, introducing gauge invariant derivatives for scalar fields:

∇µϕ = ∂µϕ − m1Aµ, ∇µπ = ∂µπ − m2Bµ,

and making local gauge transformation with ξ = (cot(θ)ϕ + tan(θ)π)η one can bring su-

pertransformations for fermions into relatively simple form:

δΨµ = − i

2
√

2
σαβ [cos(θ)Aαβ − sin(θ)Bαβγ5]γµη + (cot(θ)∇µϕ + tan(θ)∇µπγ5)η

δρ = −1

2
σαβ[sin(θ)Aαβ + cos(θ)Bαβγ5]η δχ = −i∇̂(ϕ + γ5π)η (4.8)

Note, that in Anti de Sitter space there is no axial U(1)A symmetry.
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5. S = 2 supermultiplet in AdS4

This paper devoted mainly to construction of massive spin 3/2 supermultiplets, but it is

instructive to compare with the next to simplest case — massive spin 2 supermultiplet. In

flat space such multiplets were constructed in [23] (see also [24, 38, 25]), so we consider AdS4

case. Massive N = 1 spin 2 supermultiplet contains four massive fields (2, 3/2, 3/2′ , 1).

Taking into account that in the massless limit (in flat space, see below) massive spin 2

particle decompose into massless spin 2, spin 1 and spin 0 ones, we have to use four

massless supermultiplets for our construction:







2
3
2

3
2
′

1






⇒

(

2
3
2

)

⊕
(

3
2

′

1

)

⊕
(

1′

1
2

)

⊕
(

1
2

′

0, 0′

)

We denote appropriate fields as (hµν ,Ψµ), (Ωµ, Aµ), (Bµ, ρ) and (χ,ϕ, π) and start

with the sum of kinetic terms for all fields (with ordinary partial derivatives replaced by

covariant ones):

L0 =
1

2
∇µhαβ∇µhαβ − (∇h)µ(∇h)µ + (∇h)µ∇µh − 1

2
∇µh∇µh −

−1

4
Aµν

2 +
1

2
(∂µϕ)2 − 1

4
Bµν

2 +
1

2
(∂µπ)2 + (5.1)

+
i

2
εµναβΨ̄µγ5γν∇αΨβ +

i

2
εµναβΩ̄µγ5γν∇αΩβ +

i

2
ρ̄∇̂ρ +

i

2
χ̄∇̂χ

It is crucial for the whole construction that we again have one vector and one axial-vector

fields and the possibility to make dual mixing of two supermultiplets containing these fields.

So we will use the following ansatz for supertransformations:

δ0hµν = i(Ψ̄(µγν)η) δ0Ψµ = −σαβ∇αhβµ

δ0Ωµ = − i

2
√

2
σαβ(cos(θ)Aαβ − sin(θ)Bαβγ5)γµη

δ0Aµ =
√

2 cos(θ)(Ω̄µη) + i sin(θ)(ρ̄γµη) (5.2)

δ0Bµ =
√

2 sin(θ)(Ω̄µγ5η) + i cos(θ)(ρ̄γµγ5η)

δ0ρ = −1

2
σαβ(sin(θ)Aαβ + cos(θ)Bαβγ5)η

δ0χ = −iγµ(∂µϕ + ∂µπγ5)η δ0ϕ = (χ̄η) δ0π = (χ̄γ5η)

In AdS space the sum of kinetic terms is not invariant under these transformations any

more and we must take it into account in the subsequent calculations. The next question

is which fields play the role of Goldstone ones making gauge fields massive. The choice for

bosonic fields is unambiguous — vector Aµ and scalar ϕ fields for hµν and pseudo-scalar π

for Bµ one. But for the fermions situation is more complicated. Recall that in AdS case

we have no axial U(1)A symmetry which could restrict possible choice, thus we have to

– 8 –
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consider the most general mass terms for the fermions. So we add to our Lagrangian:

L1 = m
√

2(hµν∇µAν − h(∇A)) − M
√

3Aµ∂µϕ − m̃Bµ∂µπ −
−a1

2
Ψ̄µσµνΨν − a2Ψ̄µσµνΩν − a3

2
Ω̄µσµνΩν + ia4(Ψ̄γ)ρ + ia5(Ψ̄γ)χ +

+ia6(Ω̄γ)ρ + ia7(Ω̄γ)χ +
a8

2
ρ̄ρ + a9ρ̄χ +

a10

2
χ̄χ (5.3)

where M =
√

m2 + 2κ, and require that all variations with one derivative cancel (making

necessary corrections for fermionic supertransformations). This gives us:

sin(θ) =

√
3

2
, cos(θ) =

1

2
, m̃ = M

a1 = κ0, a2 = m, a3 = −2κ0, a4 = m

√

3

2
, a5 = 0

a6 = −
√

3

2
κ0, a7 =

√

3

2
M, a8 = 0, a9 = −2M

Note that in sharp contrast with the massive spin 3/2 case now the mixing angle θ is fixed

(and has the same value as in flat case) so all masses are determined by spin 2 mass m and

cosmological constant κ. We proceed by adding appropriate mass terms for bosonic fields:

L2 = −m2 − 2κ

2
hµνhµν +

m2 + κ

2
h2 −

√

3

2
mMhϕ + 3κAµ

2 + m2ϕ2 +
M2

2
Bµ

2 (5.4)

and requiring cancellation of all variations without derivatives. This fixes the last unknown

parameter a10 = 2κ0 and the structure of additional terms in fermionic supertransforma-

tions:

δ1Ψµ =

[

iκ0hµνγν − m√
2
γµÂ − m

√

3

2
γ5Bµ

]

η

δ1Ωµ =

[

imhµνγν + κ0

√
2Aµ + κ0

√
6γ5Bµ − i

2

√

3

2
Mγµ(ϕ + γ5π)

]

η

δ1ρ =

[

− M

2
ϕ − 3M

2
γ5π

]

η (5.5)

δ1χ = [iM
√

3Â + iMB̂γ5 + κ0ϕ + 3κ0γ5π]η

Recall that in the flat case [23] due to axial U(1)A symmetry fermionic mass terms were

the Dirac ones. For the non-zero cosmological term the structure of these terms become

more complicated:

Lm = −κ0

2
Ψ̄µσµνΨν − mΨ̄µσµνΩν − κ0Ω̄µσµνΩν + im

√

3

2
(Ψ̄γ)ρ −

−iκ0

√

3

2
(Ω̄γ)ρ + iM

√

3

2
(Ω̄γ)χ − 2Mρ̄χ + κ0χ̄χ (5.6)

Nevertheless, it is not hard to check that the Lagrangian obtained is invariant (besides

supertransformations) under two local gauge transformations:

δΨµ = ∇µξ1 +
iκ0

2
γµξ1, δΩµ =

im

2
γµξ1, δρ = m

√

3

2
ξ1 (5.7)

δΨµ =
im

2
γµξ2, δΩµ = ∇µξ2 − iκ0γµξ2, δρ = −κ0

√

3

2
ξ2, δχ = M

√

3

2
ξ2
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As is known [3, 6], in the (A)dS space massive spin s particle decompose in the massless

limit into massless spin s and massive spin s-1 ones. Similarly, in the massless limit m → 0

our massive spin 2 supermultiplets decompose into massless (2, 3/2) supermultiplet and

massive (3/2, 1, 1′ , 1/2) one with mass M = 2κ0 and mixing angle sin(2θ) =
√

3
2 . Note that

in the paper [22] this corresponds to the value ε = 1/2.

All the formulas could be greatly simplified if we introduce gauge invariant derivatives:

Dµhαβ = ∇µhαβ − m√
2
Aµgαβ , Dµϕ = ∂µϕ − M

√
3Aµ, Dµπ = ∂µπ − MBµ (5.8)

as well as notation Hµν = hµν − m
M

√
6
ϕgµν and make two local gauge transformations with

the parameters:

ξ1 =
m

M
√

6
(ϕ + 3πγ5)η ξ2 = −κ0

√
6

M

(

1

3
ϕ + πγ5

)

η

Then the resulting supertransformations for the fermions take the form:

δΨµ =

[

− σαβDαhβµ +
m

M
√

6
(Dµϕ + 3Dµπγ5) + iκ0Hµνγ

ν

]

η

δΩµ =

[

− i

4
√

2
σαβ(Aαβ −

√
3Bαβγ5)γµ − κ0

√
6

M

(

1

3
Dµϕ + Dµπγ5

)

+ imHµνγ
ν

]

η (5.9)

δρ = −1

4
σαβ(

√
3Aαβ + Bαβγ5)η δχ = −iγµ(Dµϕ + Dµπγ5)η

It is interesting that the structure of terms containing scalar fields gives us one more

example of flat space limit — massless limit ambiguity well known for the massive spin

2 [26 – 28] and spin 3/2 [29 – 31] particles. Indeed, if one takes massless limit keeping

cosmological term fixed, one gets:

δΨµ ∼ 0, δΩµ ∼ −
√

3

(

1

3
Dµϕ + Dµπγ5

)

η

At the same time, in the flat space limit with fixed m we get:

δΨµ ∼ 1√
6
(Dµϕ + 3Dµπγ5)η δΩµ ∼ 0

6. N = 2 supermultiplet

Now we return back to flat Minkowski space and consider massive spin 3/2 supermultiplets

with extended supersymmetries. Our next example — massive N = 2 supermultiplet con-

taining one spin 3/2, four spin 1, six spin 1/2 and four spin 0 particles. Simple calculations

show that in the massless limit we obtain one spin 3/2 supermultiplet, doublet of vector

supermultiplets and one hypermultiplet:










3
2

4 ⊗ 1

6 ⊗ 1
2

4 ⊗ 0











⇒







3
2

2 ⊗ 1
1
2






⊕ 2 ⊗







1

2 ⊗ 1
2

2 ⊗ 0






⊕

(

2 ⊗ 1
2

4 ⊗ 0

)
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We denote all these fields as (Ψµ, Aµ
i, ρ), (Bµ

i,Ωi
j , zi) and (χ, λ,Φi) and start with the

sum of their kinetic terms:

L0 =
i

2
εµναβΨ̄µγ5γν∂αΨβ − 1

4
Aµν

2 − 1

4
Bµν

2 +
i

2
ρ̄∂̂ρ +

i

2
Ω̄i

j ∂̂Ωi
j +

+
i

2
χ̄∂̂χ +

i

2
λ̄∂̂λ +

1

2
∂µz̄i∂µzi +

1

2
∂µΦ̄i∂µΦi (6.1)

It is important that the massive supermultiplet we are going to construct must have total

U(2) = SU(2) ⊗ U(1)A symmetry. It is again crucial that we have doublet of vector and

doublet of axial-vector fields in our disposal. This allows us by making dual transformation

mixing two vector supermultiplets introduce complex objects Cµ
i = Aµ

i + γ5Bµ
i. Also,

this U(2) symmetry dictates our choice of parametrisation for hypermultiplet (there exists

three different ones). Thus we take the following form of supertransformations for massless

supermultiplets:

δΨµ = − i

4
σαβγµCαβ

iηi δρ = − 1

2
√

2
σαβC̄αβiε

ijηj

δC̄µi = 2(Ψ̄µηi) + i
√

2(Ω̄j
iγµηj) δCµ

i = i
√

2(ρ̄γµεijηj) (6.2)

δΩi
j = − 1

2
√

2
σαβCαβ

jηi − iεik∂̂zjη
k δz̄i = 2εjk(Ω̄j

iηk)

δχ = i∂̂εijΦiηj δλ = −i∂̂Φ̄iηi

δΦ̄i = −2εij(χ̄ηj) δΦi = 2(λ̄ηi) (6.3)

In the complex notations the SU(2) symmetry of our construction is explicit, while the

axial U(1)A symmetry is achieved by the following assignment of axial charges:

field ρ ηi Ψµ, Ωi
j , χ Cµ

i, zi, Φi λ

qA +2 +1 0 –1 –2

This axial U(1)A symmetry restricts possible form of fermionic mass terms and the most

general terms compatible with it look like:

1

m
L1 = −1

2
Ψ̄µσµνΨν + ia1(Ψ̄γ)Ω + ia2(Ψ̄γ)χ + a3Ω̄i

jΩj
i + a4Ω̄Ω + a5Ω̄χ + a6ρ̄λ (6.4)

As for the vector fields, we have two complex doublet of scalars which both could play

the role of Goldstone fields. Straightforward calculations show that it is the combination

zi +Φi that have to be eaten by vector fields, leaving other combination zi −Φi as physical

massive scalar fields. So we get mass terms for bosonic fields:

L2 =
m

2
√

2
[εijCµ

i∂µ(z̄j + Φ̄j) + (h.c.)] +
m2

2
Cµ

iC̄µi −
m2

4
|zi − Φi|2 (6.5)

determine the coefficients for fermionic mass terms:

a1 = −a2 =
1√
2
, a3 = −a4 =

1

2
, a5 = a6 = 1

– 11 –
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as well as structure of additional terms for fermionic supertransformations:

1

m
δ1Ψµ = −Cµ

iηi −
i

2
√

2
γµ(zi + Φi)ε

ijηj
1

m
δ1ρ = −1

2
(z̄i − Φ̄i)ηi

1

m
δ1Ωi

j = − i√
2
γµ[Cµ

iηj − δj
iCµ

kηk] +
1

2
εjk(zk − Φk)ηi − δi

jΦkε
klηl (6.6)

1

m
δ1χ = − i√

2
γµCµ

iηi + ziε
ijηj

1

m
δ1λ = − i√

2
γµC̄µiε

ijηj

It is hardly comes as a surprise that besides global supersymmetry and U(2) symmetry our

Lagrangian is invariant under the local gauge transformations:

δΨµ = ∂µξ +
im

2
γµξ, δΩi

j =
m√
2
δi

jξ, δχ = − m√
2
ξ (6.7)

Making such transformation with: ξ = 1√
2
(zi + Φi)ε

ijηj and introducing gauge invariant

derivatives for scalar fields:

Dµzi = ∂µzi −
m√
2
εijCµ

j , DµΦi = ∂µΦi −
m√
2
εijCµ

j

we obtain the final form of fermionic supertransformations:

δΨµ = − i

4
σαβγµCαβ

iηi +
1√
2
Dµ(zi + Φi)ε

ijηj

δρ = − 1

2
√

2
σαβC̄αβiε

ijηj −
m

2
(z̄i − Φ̄i)ηi

δΩi
j = − 1

2
√

2
σαβCαβ

jηi − iεikD̂zjη
k + +

m

2
εjk(zk − Φk)ηi +

m

2
δi

j(zk − Φk)ε
klηl (6.8)

δχ = iD̂Φiε
ijηj +

m

2
(zi − Φi)ε

ijηj δλ = −iD̂Φ̄iηi

Such supermultiplet has to appear when N = 3 or N = 4 supergravity is spontaneously

broken up to N = 2 and indeed such breaking turns out to be possible as was shown in [39 –

42] (see also [43]).

7. N = 3 supermultiplet

Our next example is massive N = 3 supermultiplet containing one spin 3/2, six spin 1,

fourteen spin 1/2 and fourteen spin 0 particles. It easy to check that in the massless

limit we will get one spin 3/2 supermultiplet (3/2, 3 ⊗ 1, 3 ⊗ 1/2, 2 ⊗ 0) and three vector

supermultiplets:










3
2

6 ⊗ 1

14 ⊗ 1
2

14 ⊗ 0











⇒











3
2

3 ⊗ 1

3 ⊗ 1
2

2 ⊗ 0











⊕ 3 ⊗







1

4 ⊗ 1
2

6 ⊗ 0







Really, this case is very similar to the previous one (and even more simple due to the

absence of hypermultiplet). Again it is crucial that we have two triplets of (axial-)vector

– 12 –



J
H
E
P
0
5
(
2
0
0
7
)
0
9
2

fields so we can arrange them into one comples triplet. As a result we get SU(3) invariant

supertransformations leaving the sum of kinetic terms invariant:

δ0Ψµ = − i

4
σαβγµCαβ

iηi

δ0C̄µ
i = 2(Ψ̄µηi) + i

√
2(ρ̄j

iγµηj) δ0Cµi = −i
√

2εijk(χ̄jγµηk)

δ0χ
i = − 1

2
√

2
εijkσαβC̄αβjηk − i∂̂zηi δ0z̄ = 2(χ̄iηi) (7.1)

δ0ρi
j = − 1

2
√

2
σαβCαβ

jηi − i∂̂εiklΦjkηl δ0λi = −i∂̂Φ̄ijηj

δ0Φ̄
ij = 2(ρ̄k

iεkjlηl) δ0Φij = 2(λ̄iηj)

Moreover, with the appropriate assignment of axial charges:

field ηi Ψµ, ρi
j χi λi Cµ

i, Φij z

qA +1 0 +2 –2 –1 –3

we gain U(1)A invariance as well. Among scalar fields there is only one candidate for

the role of Goldstone field, namely antisymmetric part of Φ[ij] leaving symmetric part as

physical massive scalars. So the mass terms for bosons look like:

Lb = − m

2
√

2
[εijkC̄µi∂µΦjk + h.c.] +

m2

2
[(Aµ

i)2 + (Bµ
i)2 − z̄z − Φ̄(ij)Φ(ij)] (7.2)

while the most general fermionic mass terms compatible with U(3) invariance have the

form:
1

m
Lf = −1

2
Ψ̄µσµνΨν + ia1(Ψ̄γ)ρi

i +
a2

2
ρ̄i

jρj
i +

a3

2
ρ̄ρ + a4χ̄

iλi (7.3)

Then the requirement that the whole Lagrangian be supersymmetric fixes the unknown

coefficients:

a1 =
1√
2
, a2 = 1, a3 = −1, a4 = −1

which lead to invariance of the Lagrangian under the local gauge transformations:

δΨµ = ∂µξ +
im

2
γµξ δρi

j =
m√
2
δi

jξ

and also fixes the structure of fermionic supertransformations. By using local gauge invari-

ance and introducing gauge covariant derivatives, supertransformations for fermions could

be casted to the form:

δΨµ = − i

4
σαβγµCαβ

iηi +
i√
2
εijkDµzijηk

δχi = − 1

2
√

2
εijkσαβC̄αβjηk − i∂̂zηi + mz̄(ij)ηj (7.4)

δρi
j = − 1

2
√

2
σαβCαβ

jηi − iγµεikl(∂µz(jk) + Dµz[jk])ηl + mεjklz(ik)ηl

δλi = −iγµ(∂µz̄(ij) + Dµz̄[ij])ηj + mzηi
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Such massive supermultiplet really appears then N = 4 supergravity is broken up to

N = 3 [40, 42, 43]. Note that there is an interesting and still open question on the so

called shadow supermultiplets that appear in some compactifications [44]. It would be

interesting to investigate possible interactions of such massive N = 3 supermultiplets with

N = 3 supergravity (without any other supermultiplets).

8. N = 2 supermultiplet with central charge

As is well known any massive supermultiplet without central charges having N ≥ 4 super-

symmetries necessarily contains particles with spin greater than 3/2. So we turn to the

massive supermultiplets with central charges and start with the simplest example — with

N = 2 supersymmetry. This multiplet contains two equal sets of particles corresponding

to that of massive spin 3/2 supermultiplet with N = 1 supersymmetry, so the counting of

fields in the massless limit is the same as before. But now we have to arrange all fields into

massless N = 2 supermultiplets:

2 ⊗







3
2

2 ⊗ 1
1
2






⇒ 2 ⊗







3
2

2 ⊗ 1
1
2






⊕

(

2 ⊗ 1
2

4 ⊗ 0

)

For the hypermultiplet we will use the same parametrisation as before:

δχ = −iεij ∂̂ziηj δz̄i = 2εij(χ̄ηj)

δψ = −i∂̂z̄iηi δzi = 2(ψ̄ηi) (8.1)

As for the spin 3/2 supermultiplets, the main trick is again to use dual transformation for

vector fields so that they enter through the complex combinations only. Indeed, it is not

hard to check that sum of the kinetic terms for all fields is invariant under the following

global N = 2 supertransformations:

δΨµ = − i

4
σαβγµCαβiε

ijηj δΩµ = − i

4
σαβγµC̄αβ

iηi

δC̄µ
i = 2εij(Ψ̄µηj) + i

√
2εij(λ̄γµηj) δCµi = 2(Ω̄µηi) + i

√
2(ρ̄γµηi) (8.2)

δλ = − 1

2
√

2
σαβCαβiε

ijηj δρ = − 1

2
√

2
σαβC̄αβ

iηi

The choice for the bosonic mass terms is unique:

Lb = −m

2
(C̄µ

i∂µzi + h.c.) +
m2

2
C̄µ

iCµi (8.3)

This time we have only SU(2) ≃ USp(2) global symmetry and no axial U(1)A one so we

have to consider the most general fermionic mass terms:

1

m
Lf = −1

2
Ψ̄µσµνΨν + ia1(Ψ̄γ)λ + ia2(Ψ̄γ)χ + a3λ̄χ + a4χ̄χ −

−1

2
Ω̄µσµνΩν + ib1(Ω̄γ)ρ + ib2(Ω̄γ)ψ + b3ρ̄ψ + b4ψ̄ψ (8.4)
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Indeed, the invariance of the total Lagrangian under the (corrected) supertransformations

could be achieved provided:

a1 = b1 =
1√
2
, a2 = b2 = 1, a3 = b3 = −

√
2, a4 = b4 = −1

2

As in all previous cases, we have local gauge symmetries corresponding to two spin 3/2

particles:

δΨµ = ∂µξ1 +
im

2
γµξ1 δλ =

m√
2
ξ1 δχ = mξ1

δΩµ = ∂µξ2 +
im

2
γµξ2 δρ =

m√
2
ξ2 δψ = mξ2 (8.5)

In this, with the help of these transformations, introducing gauge invariant derivative

Dµzi = ∂µzi − mCµi we obtain final form of fermionic supertransformations:

δΨµ = − i

4
σαβγµCαβiε

ijηj + Dµziε
ijηj

δΩµ = − i

4
σαβγµC̄αβ

iηi + Dµz̄iηi

δλ = − 1

2
√

2
σαβCαβiε

ijηj δχ = −iD̂ziε
ijηj (8.6)

δρ = − 1

2
√

2
σαβC̄αβ

iηi δψ = −iD̂z̄iηi

Such supermultiplet could appear when N = 4 supergravity is broken up to N = 2

and two massive gravitini have equal masses [40, 42, 43].

9. N = 4 supermultiplet with central charge

Our last example — massive N = 4 supermultiplet with central charge. Such multiplets

contains twice as many fields as massive N = 2 supermultiplet without central charge and

in the massless limit it gives just two massless spin 3/2 supermultiplets:

2 ⊗











3
2

4 ⊗ 1

6 ⊗ 1
2

4 ⊗ 0











⇒ 2 ⊗











3
2

4 ⊗ 1

7 ⊗ 1
2

8 ⊗ 0











This time even using the usual trick with vector fields it is impossible to obtain complete

SU(4) symmetry. Indeed [14] maximum symmetry that we can get here is the USp(4)

one. Thus we introduce USp(4) invariant antisummetric tensor ω[ij] such that ωijωjk =

−δi
k and use it to construct USp(4) invariant form of supertransformations for massless
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supermultiplets:

δΨµ = − i

4
σαβγµCαβiω

ijηj δΩµ = − i

4
σαβγµC̄αβ

iηi

δC̄µ
i = 2(Ψ̄µωijηj) + 2i(ρ̄ijγµηj) δCµ

i = 2(Ω̄µηi)+2i(λ̄ijγµωjkηk)

δλij = −1

2
σαβC̄αβ

[iωj]kηk−i
√

2∂̂z[iηj]+
i√
2
ωij ∂̂zkω

klηl δχ = −i∂̂z̄iηi (9.1)

δρij = −1

2
σαβCαβ[iηj] − i

√
2∂̂Φ̄[iωj]kηk − i√

2
ωij ∂̂Φ̄kηk δψ = −i∂̂Φiω

ijηj

δz̄i = 2
√

2(λ̄ijηj) −
√

2(λ̄klωklω
ijηj) δzi = 2(χ̄ηi)

δΦi = 2
√

2(ρ̄ijω
jkηk) +

√
2(ρ̄klω

klηi) δΦ̄i = 2(ψ̄ωijηj)

Then subsequent calculations lead us to the following mass terms for bosons:

Lb =
m

2
√

2
Cµiω

ij∂µ(zj − Φj) + h.c. +
m2

2
C̄µ

iCµi −
m2

4
(z̄i + Φ̄i)(zi + Φi) (9.2)

from which we see that combination zi − Φi plays the role of Goldtone fields while zi + Φi

remains as physical massive scalars. As for the fermionic fields, their mass terms turn out

to be:
1

m
L = −1

2
Ψ̄µσµνΨν +

i

2
(Ψ̄γ)ρ − i√

2
(Ψ̄γ)χ +

1

2
ωikωjlρ̄ijρkl −

1

4
ρ̄ρ +

1√
2
ρ̄χ −

−1

2
Ω̄µσµνΩν − i

2
(Ω̄γ)λ − i√

2
(Ω̄γ)ψ +

1

2
ωikωjlλ̄

ijλkl − 1

4
λ̄λ − 1√

2
λ̄ψ (9.3)

which corresponds to invariance under the following two local gauge transformations:

δΨµ = ∂µξ1 +
im

2
γµξ1, δρij =

m

2
ωijξ1, δχ = − m√

2
ξ1

δΩµ = ∂µξ2 +
im

2
γµξ2, δλij = −m

2
ωijξ2, δψ = − m√

2
ξ2

With the help of these transformations and introducing gauge invariant objects:

Dµzi = ∂µzi −
m√
2
ωijC̄µ

j , DµΦi = ∂µΦi +
m√
2
ωijC̄µ

j

we obtain final form of fermionic supertransformations:

δΨµ=− i

4
σαβγµCαβiω

ijηj −
1√
2
Dµ(z̄i − Φ̄i)ηi

δΩµ=− i

4
σαβγµC̄αβ

iηi +
1√
2
Dµ(zi − Φi)ω

ijηj

δλij=−1

2
σαβC̄αβ

[iωj]kηk − i
√

2D̂z[iηj] +
i√
2
ωijD̂zkω

klηl −

− m√
2
[(zk + Φk)ω

k[iωj]lηl +
1

2
ωij(zk + Φk)ω

klηl]

δρij=−1

2
σαβCαβ[iηj]−i

√
2D̂Φ̄[iωj]kηk−

i√
2
ωijD̂Φ̄kηk+

m√
2
[(z̄k+Φ̄k)ωk[iηj]+ωij(z̄

k+Φ̄k)ηk]

δχ=−iD̂z̄iηi +
m

2
(z̄i + Φ̄i)ηi

δψ=−iD̂Φiω
ijηj +

m

2
(zi + Φi)ω

ijηj
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10. Conclusion

Thus we give explicit construction of massive spin 3/2 supermultiplets out of the massless

ones and this gives us important and model independent information om the structure of

supergravity models where such supermultiplets could arise as a result of spontaneous su-

persymmetry breaking. Also we hope that experience gained will be helpful in investigation

of massive supermultiplets with arbitrary superspins.
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